HIF and reactive oxygen species regulate oxidative phosphorylation in cancer.

نویسندگان

  • Eric Hervouet
  • Alena Cízková
  • Jocelyne Demont
  • Alena Vojtísková
  • Petr Pecina
  • Nicole L W Franssen-van Hal
  • Jaap Keijer
  • Hélène Simonnet
  • Robert Ivánek
  • Stanislav Kmoch
  • Catherine Godinot
  • Josef Houstek
چکیده

A decrease in oxidative phosphorylation (OXPHOS) is characteristic of many cancer types and, in particular, of clear cell renal carcinoma (CCRC) deficient in von Hippel-Lindau (vhl) gene. In the absence of functional pVHL, hypoxia-inducible factor (HIF) 1-alpha and HIF2-alpha subunits are stabilized, which induces the transcription of many genes including those involved in glycolysis and reactive oxygen species (ROS) metabolism. Transfection of these cells with vhl is known to restore HIF-alpha subunit degradation and to reduce glycolytic genes transcription. We show that such transfection with vhl of 786-0 CCRC (which are devoid of HIF1-alpha) also increased the content of respiratory chain subunits. However, the levels of most transcripts encoding OXPHOS subunits were not modified. Inhibition of HIF2-alpha synthesis by RNA interference in pVHL-deficient 786-0 CCRC also restored respiratory chain subunit content and clearly demonstrated a key role of HIF in OXPHOS regulation. In agreement with these observations, stabilization of HIF-alpha subunit by CoCl(2) decreased respiratory chain subunit levels in CCRC cells expressing pVHL. In addition, HIF stimulated ROS production and mitochondrial manganese superoxide dismutase content. OXPHOS subunit content was also decreased by added H(2)O(2.) Interestingly, desferrioxamine (DFO) that also stabilized HIF did not decrease respiratory chain subunit level. While CoCl(2) significantly stimulates ROS production, DFO is known to prevent hydroxyl radical production by inhibiting Fenton reactions. This indicates that the HIF-induced decrease in OXPHOS is at least in part mediated by hydroxyl radical production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochondria: from bioenergetics to the metabolic regulation of carcinogenesis.

In this review, we discuss the concept of metabolic remodeling and signaling in tumors, specifically the various metabolites that participate in the regulation of gene expression in cancer cells. In particular, pyruvate, oxaloacetate, succinate and fumarate, four mitochondrial metabolites, activate genes relevant for tumor progression. When the balance between glycolysis and oxidative phosphory...

متن کامل

HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates the metastatic colonization of cancers in lungs

Hypoxia-inducible factor 1 (HIF-1) has been associated with distant tumor metastasis; however, its function in multiple metastatic processes has not yet been fully elucidated. In the present study, we demonstrated that cancer cells transiently upregulated HIF-1 activity during their metastatic colonization after extravasation in the lungs in hypoxia-independent and reactive oxygen species (ROS)...

متن کامل

Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation.

Mammalian cells detect decreases in oxygen concentrations to activate a variety of responses that help cells adapt to low oxygen levels (hypoxia). One such response is stabilization of the protein HIF-1 alpha, a component of the transcription factor HIF-1. Here we show that a small interfering RNA (siRNA) against the Rieske iron-sulfur protein of mitochondrial complex III prevents the hypoxic s...

متن کامل

Inactivation of the HIF-1α/PDK3 signaling axis drives melanoma toward mitochondrial oxidative metabolism and potentiates the therapeutic activity of pro-oxidants.

Cancer cells can undergo a metabolic reprogramming from oxidative phosphorylation to glycolysis that allows them to adapt to nutrient-poor microenvironments, thereby imposing a selection for aggressive variants. However, the mechanisms underlying this reprogramming are not fully understood. Using complementary approaches in validated cell lines and freshly obtained human specimens, we report he...

متن کامل

Opposing Effects of Oxygen Regulation on Kallistatin Expression: Kallistatin as a Novel Mediator of Oxygen-Induced HIF-1-eNOS-NO Pathway

Oxidative stress has both detrimental and beneficial effects. Kallistatin, a key component of circulation, protects against vascular and organ injury. Serum kallistatin levels are reduced in patients and animal models with hypertension, diabetes, obesity, and cancer. Reduction of kallistatin levels is inversely associated with elevated thiobarbituric acid-reactive substance. Kallistatin therapy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Carcinogenesis

دوره 29 8  شماره 

صفحات  -

تاریخ انتشار 2008